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Received 16 July 1996

Abstract. In physical applications of differential geometry, one sometimes wishes to compute
the holonomy group of a Riemannian manifold from local data, such as the curvature tensor.
In general, this can be a complicated problem, but we show that, in cases of most interest in
physics, the holonomy group can be obtained directly from the Lie algebras generated by the
curvature tensor.

1. Introduction

In physical applications of Riemannian geometry, the holonomy group [1, 2] is frequently of
basic interest [3–5]. Often the physical situation gives us some information on the curvature
tensor, and we wish to use this to determine or at least constrain the holonomy group. In
general, however, this is no easy task, and several interesting pathologies are possible.

Consider the work of Gibbonset al [4] which is concerned with the construction of
certain manifoldsM of special holonomy. (Attention has recently been focused on such
manifolds in connection with supermembrane theory [5].) In that work, the Lie algebra
Kx generated by the curvature tensor atx ∈ M is computed. Gibbonset al are careful to
emphasize thatit is not necessarily the casethat Kx is isomorphic to the Lie algebra of the
holonomy group; they remark that information on the covariant derivatives of the curvature
tensor would be needed to bridge the gap between curvature and holonomy. In fact, there
are also cases in which even this additional information would not be sufficient, even if it
were available—which is rarely the case.

The overall purpose of this work is to investigate the relationship between the curvature
tensor and the holonomy algebra of a Riemannian manifold, henceforth denotedM. In
particular, we wish to establish results which allow us to deduce the algebra of the holonomy
group from information on the curvature algebras,{Kx}. (The holonomy group itself is not
completely determined by its algebra, because the group is often disconnected; but this
problem is now rather well understood. Essentially, the additional information required is
topological, involving the fundamental group ofM; one compares this with the holonomy
classification theorems. The full holonomy group can always be deduced in this way. See
[6] for examples and further references.) Our most useful result in this direction is the
following.

Let x ∈ M, and letRx be the curvature tensor atx. If M is a local Riemannian product,
then the tangent spaceTx(M) will split into a direct sum of subspacesT (i)

x of dimensions
mi , 6mi = n = dimM, corresponding to a splitting ofKx into a direct sum of sub-algebras,
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K(i)
x . We shall say thatKx is genericif any of theK(i)

x is isomorphic either to the orthogonal
algebraSO(mi) or to the unitary algebraU(mi/2), if mi is even. (If Kx does not split,
‘generic’ just means ‘isomorphic toSO(n) or U(n/2)’, which are the holonomy algebras
of generic [1] Riemannian and Kaehlerian manifolds, respectively.) Then we have the
following result.

Theorem 1.1.Let M be a complete, connected Riemannian manifold, and letG be a sub-
algebra ofSO(n) such that the curvature algebras satisfy

Ky ⊆ G for all y ∈ M

Kx = G for somex ∈ M.

(That is, all of the curvature algebras are contained in a certain ‘minimal’ one.) Then ifKx

is not generic, the Lie algebra of the holonomy group ofM is isomorphic toG.

The proof will be given in section 4, below.
This theorem immediately settles the concerns of Gibbonset al [4], for whom G is

either theG2 sub-algebra ofSO(7) or theSpin(7) sub-algebra ofSO(8), neither of which
is generic of course. In practice, theorem 1.1 means that the holonomy algebra can be
computed directly from the curvature algebras, provided that the latter are never generic—
which is precisely the case of interest in physics.

The proof of such results combines results on the analyticity of Einstein manifolds [7]
with the classical theorems of Nijenhuis [8, 9]. We begin with the basic machinery (see also
[10]).

2. Infinitesimal holonomy

Let M be a connectedn-dimensional Riemannian manifold with metricg, Levi-Civitá
connection∇, and curvature tensorR. Note that sinceR is a (1, 3) tensor, then for each
pair of tangent vectorsX, Y at a pointx, Rx(X, Y ) is a(1, 1) tensor; in other words, it is just
a linear map from the tangent space to itself, a so-called endomorphism of the tangent space.
Let End[Tx(M)] be the algebra of endomorphisms of the tangent spaceTx(M); then Kx ,
the curvature algebra atx, is the sub-algebra ofSO(n) generated by the subspace of End
[Tx(M)] spanned by allTx(M) endomorphisms of the formRx(X, Y ), whereX, Y ∈ Tx(M).
Similarly, let K(1)

x be generated by all endomorphisms of the formRx(X, Y ) or of the form
(∇R)x(X, Y, Z), and so on. We have

Kx = K(0)
x ⊆ K(1)

x ⊆ K(2)
x ⊆ · · ·

and we define theinfinitesimal holonomy algebraTx by

Tx =
∞⋃

m=0

K(m)
x

(see [10]). IfHolx(M) is the Lie algebra of the holonomy group Holx(M) at x, then

Tx ⊆ Holx(M) for all x ∈ M.

An interesting object which interpolates betweenTx and Holx(M) is the local holonomy
algebra, defined as the Lie algebra of the group

Loc Holx(M) = ∩ Holx(Ui)

where the intersection has taken over all connected open neighbourhoodsUi of x, each
endowed with the metric induced fromM. We have

Tx ⊆ Loc Holx(M) ⊆ Holx(M).
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The following two theorems are basic. The first is according to Nijenhuis [8, 9].

Theorem 2.1.Let (M, g) be a connected Riemannian manifold.
(a) For each integerm, the set{x ∈ M such that dimTx > m} is open.
(b) If dim Tx is independent ofx, or if (M, g) is real-analytic, thenTx is isomorphic

to Holx(M) for all x ∈ M.

See [1] for the term ‘real analytic’. In view of (b), we shall say thatM has a constant
infinitesimal holonomy algebra if dimTx is independent ofx.

We shall also need Berger’s theorem [1].

Theorem 2.2.Let M be a connected, simply connected (but not necessarily complete)n-
dimensional Riemannian manifold.

(a) If M is irreducible, Holx(M) is isomorphic to one of the following: (i)SO(n),
(ii) U(n/2), (iii) SU(2)Sp(n/4), (iv) SU(n/2), (v) Sp(n/4), (vi) G2(n = 7), (vii)
Spin(7)(n = 8), (viii) Spin(9)(n = 16), (ix) the isotropy group of a symmetric space
of rank > 2.

(b) If M is reducible, Holx(M) is isomorphic to a direct product of groups drawn from
the appropriate lower-dimensional versions of the above list, together with the trivial group.

Recall thatM is said to be irreducible if Holx(M) acts irreducibly onTx(M). We
shall say thatM is locally irreducible if the restricted holonomy group Res Holx(M) acts
irreducibly, and that it isstrongly irreducible if Loc Holx(M) acts irreducibly for allx.
Recall that the restricted holonomy group is obtained by considering parallel transport
around contractible loops only. Note that in Berger’s theorem, the listed groups must be
correctly embedded inSO(n) in each case: see [1] for these embeddings. We shall refer
to these lists, and the corresponding list of Lie algebras, as the irreducible (respectively,
reducible) Berger lists. Finally,SO(n) and U(n/2) are ‘generic’, while the other groups
in the irreducible list are ‘special’. A group in the reducible list is generic if it has at least
one generic factor.

It is important to note that Berger’s theorem only classifies the holonomygroups of
(simply connected) manifolds. It is by no means clear that it classifiesKx or Tx . However,
the following results, whose proofs we shall merely sketch, are a step in that direction.

Proposition 2.3.(a) If the infinitesimal holonomy algebra is constant, then it is classified
by the Berger lists.

(b) If M is strongly irreducible,U is a connected open subset ofM, and the infinitesimal
holonomy algebra is constant onU , then eachTx is classified by the irreducible Berger list
for all x ∈ U .

Proof. (a) As the restricted holonomy group is isomorphic to the holonomy group of the
Riemannian universal cover ofM, it is classified by the Berger lists. By Nijenhuis’ theorem,
each infinitesimal holonomy algebra is isomorphic to the algebra of the holonomy group,
which of course is also the algebra of the restricted holonomy group.

(b) Given any pointx in M, it is clear that we can find a connected open neighbourhood
Vx such that the holonomy group ofVx coincides with the local holonomy group ofM at
x, and such that

Loc Holx(M) = Holx(Wx)

for every connected open neighbourhoodWx contained inVx . Given the open setU , let
x be in U and letVx be as above. LettingWx be the intersection ofVx and U , we find
that the local holonomy group ofU coincides with that ofM itself, and soU is strongly
irreducible. The result now follows as in part (a).
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It remains now to consider the consequences of relaxing the condition that the
infinitesimal holonomy algebra be constant. A helpful way to think about this is in terms of
‘rigidity’. Given a manifold M with a constant infinitesimal holonomy algebra, we know
that dimTx cannot be ‘pushed up’ at isolated points: according to the first part of Nijenhuis’
theorem, this can only be done on open sets. The following proposition will allow us to
say more.

Proposition 2.4.Let M be a connected Riemannian manifold which is complete or locally
irreducible or both. Suppose thatM contains no open subset on which the infinitesimal
holonomy algebra is constant and generic. ThenM has a constant infinitesimal holonomy
algebra.

Proof. Let N0 be any connected component of the set{x ∈ M such that dimTx =
Max
y∈M

dimTy}. By Nijenhuis’ theorem,N0 is an open submanifold ofM. With respect

to the induced metric,N0 is (again by Nijenhuis’ theorem) a manifold with a constant
infinitesimal holonomy algebra, which must, by proposition 2.3, belong to one of then-
dimensional Berger lists. By hypothesis, the infinitesimal holonomy algebra is not generic.
HenceHol(N0) is a direct sum of algebras drawn from thespecial Berger lists, and so
(sinceN0 is simply connected) Hol(N0) has the formS0 × S1 × S2 × · · · where each group
Sj is special. Here we can takeS0 to be the trivial group if necessary; otherwise eachSj

acts irreducibly on some subspaceT
(j)
x of the tangent spaceTx(N0), wherex is an arbitrary

point in N0. (The action ofSj on T (k)
x is of course trivial ifk 6= j .) Now sinceN0 is not

complete, we cannot apply the deRham splitting theorem to conclude thatN0 is isometric
to a product manifold. However, we can still proceed as follows (see [10], p 185). Fixx,
and letTx(N0) = 6T

(j)
x as above. Then it is possible to show that for eachj , there is a

submanifold ofN0, sayN
(j)

0 , passing throughx, with a tangent space atx which may be
identified with T

(j)
x ; and there exists a connected open neighbourhood ofx, Vx , which is

isometric to a Riemannian productV (0)
x × V (1)

x × · · · whereV
(j)
x is an open neighbourhood

of x in N
(j)

0 . Hence Holx(Vx) = Holx(V (0)
x )×Holx(V (1)

x )×· · ·. Now since the infinitesimal
holonomy algebra is constant onN0, it is likewise constant onVx , and so Nijenhuis’ theorem
implies thatHolx(Vx) = Tx . But Tx = Holx(N0), and so Holx(N0) = Holx(Vx) since both
N0 and Vx are simply connected. ThereforeSj = Holx(V

(j)
x ), and so with the exception

of V (0)
x (which is flat) eachV (j)

x is an irreducible manifold with special holonomy. Now
irreducible manifolds with special holonomy are Einstein manifolds (see [1]) and so, of
course, are flat manifolds. Hence, there is an open neighbourhood ofx on which the
Ricci tensor is a sum, with constant coefficients, of the metrics on theV (i)

x . Therefore,
∇ Ric = 0 at x and hence throughoutN0; indeed we have∇ Ric = 0 on the entire set
{x ∈ M such that dimTx = Max

y∈M
dimTy} and also on its closure.

Let M1 be the complement of that closure, and letN1 be a connected component of
the open set{x ∈ M1such that dimTx = Max

y∈M
dimTy}. Proceeding thus, we find that

∇ Ric = 0 everywhere onM. If M is locally irreducible, Schur’s lemma now implies that
M is an Einstein manifold. The DeTurck–Kazdan [7] theorem now informs us thatM is
real-analytic—that is,M has an atlas of normal coordinate systems with respect to which the
metric is real-analytic. (For a very clear explanation of this theorem, normal coordinates,
and their relevance to analyticity, see chapter 5 of [1], in particular p 145.) The Nijenhuis
theorem implies that the infinitesimal holonomy algebra ofM is constant.

If M is complete rather than locally irreducible, we proceed as follows. LetM̃ be
the universal cover ofM, endowed with the pulled-back metric. TheñM is also complete
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with respect to this metric, as well as being simply connected. Therefore, we can use
the deRham splitting theorem [10]:M̃ is globally isometric to the Riemannian product
M̃ = M̃(0) ×M̃(1) ×M̃(2) ×· · · where eachM̃(j) is either flat or irreducible. Now∇ Ric = 0
on M̃, and hence on each̃M(j). Applying Schur’s lemma as before, we find that each
M̃(j) is an Einstein manifold and hence real-analytic. ThereforeM̃ is real-analytic and
consequently the infinitesimal holonomy algebra ofM̃ is constant. The same is therefore
true of M. This completes the proof.

We shall give two applications of this proposition. The first will be used in the proof
of the main theorem 1.1.

Theorem 2.5 (Rigidity).Let M be a connected, complete manifold with an infinitesimal
holonomy algebra of typeG—that is,Tx ⊆ G for all x ∈ M, andTx = G for at least one
x. If G is isomorphic to the Lie algebra of one of thespecialmembers of then-dimensional
Berger lists, thenTx = G for all x ∈ M.

Proof. Suppose thatM contains a connected open setU on which the infinitesimal
holonomy algebra is constant and generic. Since it is constant, this algebra is isomorphic
to the algebra of one of the members of then-dimensional Berger lists, (proposition 2.3).
Let x ∈ U ; then Tx ⊆ G. But none of the special members of the Berger lists contain
any generic members of either the irreducible or the reducible Berger list. (Recall that
the generic members of the reducible list are those with at least one generic factor.) For
example, Sp(k) contains no members of the 4k-dimensional irreducible Berger list other than
itself, and it contains no members of the 4k-dimensional reducible Berger list other than
those of the form Sp(k′) × Sp(k′′), wherek′ + k′′ 6 k, and none of these are generic. (Bear
in mind our remarks concerning ‘correct’ embeddings, after theorem 2.2.) The contradiction
implies thatM satisfies the conditions of proposition 2.4, and so the infinitesimal holonomy
algebra is constant. Since it is isomorphic toG at one point,Tx = G for all x, and this
completes the proof.

A connected, complete Riemannian manifold with a constant special infinitesimal
holonomy algebra is therefore ‘rigid’ in the following sense.Tx cannot be ‘pushed down’
to a sub-algebra at a point or even on a proper open subset, as long as the infinitesimal
holonomy algebra is of typeG. Intuitively, the manifold ‘resists being flattened’; ifTx is
‘pushed down’ atx, thenTy will automatically ‘push up’ to a generic algebra at some other
point y ∈ M (and therefore on an open neighbourhood ofy). This remarkable interaction of
the infinitesimal holonomy algebras at various points is ultimately due to the real analyticity
of Einstein metrics.

As another application of proposition 2.4, and to conclude this section, we analyse
the structure of connected Riemannian manifolds withnon-constantinfinitesimal holonomy
algebras. It is convenient at this point to assume thatM is strongly irreducible. Then
according to part (b) of proposition 2.3, ifU is a connected open subset on whichTx

is constant, then this algebra (denotedT(U)) is isomorphic to the algebra of one of the
members of the irreducible Berger list. Furthermore, ifx ∈ ∂U , the boundary ofU , then
Tx ⊆ T(U). Now let us consider the contrary; thenRx , (∇R)x and so on do not satisfy the
algebraic relations which defineT(U). But if that is the case, then evidently we can find
an open neighbourhood ofx on which these relations are not satisfied, and this contradicts
the fact thatx is in the boundary.

Now by proposition 2.4 (recall thatM is locally irreducible if it is strongly irreducible)
M must contain a non-empty open subset on which the infinitesimal holonomy algebra is
constant and generic. LetMg be the union of all such; we callMg the generic submanifold
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Figure 1. A manifold of holonomy SO(8).

of M. If x is any point ofM such thatTx is generic, thenx has an open neighbourhood
Vx on which the infinitesimal holonomy algebra is generic. Now either the infinitesimal
holonomy algebra is constant onVx (in which casex ∈ Mg) or it is not; in the latter case,
Vx must contain a non-empty open subset on which the infinitesimal holonomy algebra is
constant and generic, and so eitherx ∈ Mg or x ∈ ∂Mg. Hence every ‘generic point’ is in
Mg or its boundary.

ClearlyTx is isomorphic either toSO(n) or to U( 1
2n) for all x ∈ Mg, and the subset of

Mg on whichTx = SO(n) is open (possibly empty). If there is a non-empty open subset
on which Tx = U( 1

2n), then Tx = U( 1
2n) on the boundary. Figure 1 gives a schematic

indication of one possible situation in the case of an eight-dimensional manifold. Notice
that we have takenTx = U(4) on the boundary ofMg. There are other possibilities, but it
would not be possible to haveTx = SO(8) or spin(7) on the boundary, as these are not
contained inU(4). Beyond this, our results so far do not permit us to be more specific as
to the behaviour ofTx on the boundary ofMg. Indeed, we have not even shown that, in
this case,Tx must belong toeither of the Berger lists. In the next section, it will be proved
that Tx is in fact classified by the Berger lists forall x ∈ M (theorem 3.1). However,
theorem 3.1 doesnot imply that whenM is irreducible—or even strongly irreducible—
every Tx must belong to theirreducible Berger list. Therefore, even ifM is strongly
irreducible, it is possible to find thatTx is a member of the reducible Berger list whenx is
in the boundary ofMg. It is possible, for example, thatTx could be isomorphic toSO(n)

everywhere except at one point, where it is the zero algebra, despite the fact that the zero
algebra belongs to the reducible Berger list. (It corresponds, of course, to the trivial group.)
Choosing normal coordinates at this point, we will find that all partial derivatives of the
metric vanish there; this underlines the fact that we are dealing with metrics which are not
analytic.

In the complement of the closure ofMg, the behaviour of the infinitesimal holonomy
algebra is more strongly constrained. LetN be a connected component of this complement
(assuming that it is not empty). ThenN is locally irreducible (sinceM is strongly
irreducible) andTx cannot be generic for anyx ∈ N . Hence proposition 2.4 implies
that the infinitesimal holonomy algebra is constant onN ; and by proposition 2.3, it is
isomorphic to one of the special members of then-dimensional irreducible Berger list. We
see, then, thatTx is classified by the irreducible Berger lists everywhere, except possibly on
the boundary of the generic submanifold. Figure 2 represents a simple example in which
the complement of the closure ofMg is non-empty. More generally, it would be possible
to have more than one region on whichTx is special, but these regions must be mutually
disconnected if their infinitesimal holonomy algebras differ.
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Figure 2. A manifold of holonomy U(4). Figure 3. A manifold of holonomy SO(8).

Figure 3 represents an interesting case which may be possible in eight dimensions. Since
neitherU(4) nor Spin(7) is contained in the other, we cannot have eitherTx = U(4) or
spin(7) on the boundary. On the other hand,SU(4)(= Spin(6)) is contained in bothU(4)

and Spin(7), and soSU(4) is possible, as are smaller algebras such asSp(2) (=spin(5))

or even the zero algebra. It would be most interesting to have an explicit example of a
compact manifold of this kind, particularly if the size of the generic region could be varied.

3. The curvature algebra

The infinitesimal holonomy algebra provides a link between local geometric data and the
holonomy group of a connected Riemannian manifold. However, theorem 1.1 is stated in
terms of a simpler object, the curvature algebraKx . At this point it is by no means clear that
the curvature algebras are classified by the Berger lists; indeed, we have yet to demonstrate
this completely even forTx , except for manifolds with constant infinitesimal holonomy
algebras. Clearly we need a complete classification of bothKx andTx . This can be done
by means of the simple device of constructing a Riemannian manifold which has the same
curvature (at a given point) asM, but which is analytic in normal coordinates.

Theorem 3.1.Let M be anyn-dimensional Riemannian manifold, and letx ∈ M. ThenKx

is isomorphic to the Lie algebra of some member of one of then-dimensional Berger lists;
and similarly forTx .

Proof. Let S denote the(0, 4) version of the curvature tensor atx. If Tx(M) is regarded
as a manifold, then each tangent space ofTx(M) can be identified withTx(M) in a natural
way, and this identification will be understood henceforth. Letg(x) denote the metric tensor
of M evaluated atx. We define a(0, 2) tensor,h, on Tx(M) as follows. Lety ∈ Tx(M)

and letX, Y be tangent vectors toTx(M) at y. Then set

h(y)(X, Y ) = g(x)(X, Y ) + 1
3S(X, y, y, Y ).

Notice thatS(Y, y, y, X) = S(y, X, Y, y) = S(X, y, y, Y ) so thath is a symmetric tensor
field on Tx(M). Let N be a connected open neighbourhood of the origin ofTx(M) such
that h(y) is positive—definite for ally ∈ N ; such anN clearly exists, sinceg(x) is
positive—definite. IfgN denotes the restriction ofh to N , then(N, gN) is an-dimensional
Riemannian manifold. With respect to the global coordinate system induced onTx(M) by
an orthonormal basis ofTx(M), we havegN

ij (y) = δij + 1
3

∑
k

∑
l Siklj y

kyl , where theSiklj

are the components ofS with respect to the given basis, and theyj are the coordinates of the
point y (that is, the components of the vectory). EvidentlygN

ij (0) = δij and(∂kg
N
ij )(0) = 0,

and so these coordinates are normal at the origin forgN . Clearly gN is a real-analytic in
normal coordinates.
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Now let (P, g) be any Riemannian manifold such that the metric is real-analytic in
normal coordinates. Then [11] the components ofg with respect to normal coordinates may
be expressed as a power series of the form

gij (x) = δij + 1
3

∑
k

∑
l

Riklj (0)xkxl + 1
6

∑
k

∑
l

∑
m

(∇kRilmj )(0)xkxlxm + · · ·

+Cr

∑
k

∑
l

. . . [(∇k∇l . . . Rimpj )(0) + terms involving lower order

covariant derivatives ofR]xkxl · · · + · · ·
where Riklj (0), (∇kRilmj )(0) etc denote the components ofR, ∇R, etc evaluated at the
origin of coordinates, and whereCr (the coefficient of therth order term) is some universal
constant. The precise form of this formula is very complicated (see [11]) and not necessary
for our purposes. Recall that, to define the curvature algebra and the infinitesimal holonomy
algebra, we think of the curvature and its covariant derivatives as endomorphisms of the
tangent space at any point: in simpler language, we ‘feed’ tangent vectors to these tensors
until precisely one contravariant and one covariant index remain free. This allows us to think
of the curvature tensor and its covariant derivatives as matrices, which generate the various
algebras by ordinary matrix multiplication. Now suppose that, in the above expansion,
every term beyond the quadratic vanishes. Then, leaving aside technicalities to be dealt
with below, the higher covariant derivatives of the curvature tensor either vanish or can be
expressed as matrix products of the lower ones. (This is what we mean by ‘terms involving
lower order covariant derivatives ofR’.) The upshot is that the infinitesimal holonomy
algebras of such a metric coincide with the curvature algebras. Intuitively, this is easy
to understand: the infinitesimal holonomy algebra differs from the curvature algebra only
because the former depends on all of the terms in the Taylor expansion of the metric. If, as
in the case of the metric onN , the expansion stops at the quadratic level, then we expect
to obtain nothing new from the higher derivatives.

Now sincegN is analytic in normal coordinates, we can compute its curvatureRN

and the derivatives of the curvature by simply equating coefficients in the above power
series—bearing in mind, of course, that the coefficients ofxkxlxm . . . will automatically be
symmetrical in the indicesk, l, m . . .. Thus we obtain

RN
iklj (0) + RN

ilkj (0) = Siklj + Silkj

(∇N
k RN

ilmj )(0) + Sym(k, l, m) = 0

[(∇N
k ∇N

l . . . RN
impj )(0) + terms involving lower order covariant derivatives ofRN ]

+ Sym(k, l, . . . , m, p) = 0

where Sym( ) denotes additional terms such that the resulting expression is symmetrical
in the indicated indices and 0 denotes 0∈ Tx(M). However, bothRN(0) and S are the
curvature of certain metrics, and so both satisfy the usual identities. The effect of these
identities is that the Sym( ) terms can be dropped from the above relations. For example,
the first equation implies thatSiklj + Silkj − Skilj − Sklij − Sikjl − Sijkl + Sljik + Slijk =
{a similar expression inRN

iklj (0)}.
The symmetries of the curvature tensor reduce the left-hand side to 4Siklj +2Silkj +2Sijlk

which, by the first Bianchi identity, is just 6Siklj . Therefore we haveRN
iklj (0) = Siklj . In

the same way, the differential identities satisfied by curvature tensors reduce the second
equation to(∇N

k RN
ilmj )(0) = 0 (only at the origin ofTx(M), of course), and so on. In

general, the higher derivatives ofRN , evaluated at 0, can be expressed algebraically in
terms of the lower-order derivatives, also evaluated at 0. If we denote the curvature algebra
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of N at the origin byK0(N), and the infinitesimal holonomy algebra byT0(N), then we
have T0(N) = K0(N). (We are not asserting—nor is it true in general—thatTx(M) is
isomorphic toKx(M).)

The fact thatgN is analytic in normal coordinates allows us to invoke Nijenhuis’
theorem, and so we haveT0(N) = Hol0(N). The latter must be isomorphic to the Lie
algebra of some member of one of the Berger lists. (Recall that Berger’s theorem does
not require completeness.) But the equationRN

iklj (0) = Siklj implies thatK0(N) = Kx(M),
sincegN

ij (0) = δij and theSiklj are components with respect to an orthonormal basis of
Tx(M). Therefore, we haveKx(M) = K0(N) = T0(N) = Hol0(N), and soKx(M) belongs
to one of the Berger lists.

Let Smiklj denote the components of(∇R)x with respect to the same orthonormal basis
of Tx(M) as was used above. Then using the coordinates onTx(M) corresponding to this
basis, we modify the definition ofgN as follows:

gN
ij (y) = δij + 1

3

∑
k

∑
l

Siklj y
kyl + 1

6

∑
m

∑
k

∑
l

Smiklj y
mykyl

where N ⊆ Tx(M) is defined in the obvious way. Proceeding as before, we obtain
Siklj = RN

iklj (0) andSmiklj = (∇N
m RN

iklj )(0), while every higher derivative can be expressed

in terms of these two. Thus, we haveK
(1)

0 (N) = T0(N), and the latter is again isomorphic
to Hol0(N) by Nijenhuis’ theorem. SinceK(1)

x (M) is clearly isomorphic toK(1)

0 (N), we
again find thatK(1)

x (M) is classified by Berger’s lists. In fact, the same is evidently true of
K

(j)
x (M) for every j . But Tx(M) = K

(j)
x (M) for some sufficiently largej , and soTx(M)

is also classified by Berger’s lists. This completes the proof.

Notice that the holonomy structure ofM plays no role in the proof, and so there
is no reason to expect thatN will be irreducible if M is irreducible—or even strongly
irreducible. For example, the curvature ofM could vanish atx, in which case Hol0(N) is
trivial. Thus, we cannot prove thatKx(M) or Tx(M) must belong to the irreducible Berger
list for all points in an irreducible or strongly irreducible Riemannian manifold. In order
to obtain such results, one needs an even stronger condition. For example, let Inf Holx(M)

denote the connected subgroup of Loc Holx(M) corresponding toTx(M). If the action of
Inf Holx(M) on Tx(M) is irreducible, then indeedTx must belong to the irreducible Berger
list.

4. The proof of theorem 1.1

We begin by observing that, according to theorem 3.1,Kx is an algebra in one of the
Berger lists, and hence the same is true ofG. For the sake of concreteness, let us
take G to be the symplectic algebraSp(n/4); the reader will find it easy to make the
necessary technical modifications for the other special Berger algebras. The statement that
Ky ⊆ Sp(n/4) has the following interpretation: the tangent spaceTy(M) must admit a pair
of endomorphismsJ , K, satisfyingJ 2 = K2 = −1, J ◦K = −K ◦J , andRy ◦J = J ◦Ry ,
Ry ◦K = K ◦Ry . These last equations have an analytic as well as an algebraic significance:
they are the local integrability conditions for the equations∇J = 0, ∇K = 0. Hence we
can arrange for these equations to hold on a suitable small neighbourhood ofy, and so
we have(∇R)y ◦ J = J ◦ (∇R)y , and similarly for the higher derivatives. So in fact the
infinitesimal holonomy algebras satisfyTy ⊆ Sp(n/4) for all y ∈ M. SinceKx = Sp(n/4)

by hypothesis, andKx ⊆ Tx always, we haveTx = Sp(n/4). Using theorem 2.5, we now
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haveTy = Sp(n/4) for all y, and now Nijenhuis’ theorem gives us the desired result. This
completes the proof.

5. Conclusion

The overall plan of this work may be summarized as follows. We wish to ‘obtain holonomy
from curvature’, and Nijenhuis’ theorem opens the way to this; however, there are two
main obstacles in our path. The first is that Nijenhuis’ theorem requires information on the
infinitesimal holonomy algebras, but the curvature tensor itself only yields the curvature
algebras. We deal with this, in the proof of theorem 3.1, by relating the metric to a much
simpler one for which the infinitesimal holonomy algebra is (by construction) isomorphic to
the curvature algebra, on a certain neighbourhoodN . This is the relationT0(N) = K0(N).
The second obstacle is that Nijenhuis’ theorem requires analyticity. This is handled by
noting that our information on the curvature algebras allows us to force our manifolds to be
Einstein manifolds, which in turn allows us to use the Kazdan–DeTurck analyticity theorem.

From a practical point of view, our results reduce the determination of the holonomy
group to a computation of curvature algebras (leaving aside the topological questions
mentioned in the introduction). The structure constants of the curvature algebra at some
point can be obtained as follows. Choose an orthonormal basis at that point, and regard
the curvature tensor components,Rijkm, as a set of antisymmetric matrices labelled byk

and m. Because of the antisymmetry ink and m, one obtainsn(n − 1)/2 matrices in
this way. These matrices will not, however, be linearly independent (unless the curvature
algebra is generic, so that these matrices span the whole orthogonal algebra); instead, they
span some subspace of the orthogonal algebra. In principle it is now straightforward linear
algebra to identify a basis of this subspace, and the structure constants are then evaluated by
computing ordinary matrix commutators. An alternative approach, if one suspects that the
curvature algebra is isomorphic to some given sub-algebra of the orthogonal algebra (guided
in one’s guesses by theorem 3.1, of course) is to check that the above matrices satisfy the
simple linear relations which define the Berger algebras. (These are given in chapter 10
of [1], for example.) In practice, both approaches might well involve heavy computations,
but it should not be difficult to implement them on a computer algebra program such as
MathTensor [12], which automatically produces the curvature components when presented
with the components of a metric.

This work was motivated by the observation, in [4], that the holonomy algebra of
a Riemannian manifold is not necessarily isomorphic to any of its curvature algebras.
Gibbonset al solve this problem by constructing a parallel spinor onM, which forces
the spin holonomy to be special. Although theorem 1.1 shows that this additional labour is
unnecessary, the technique used by Gibbonset al is of independent interest. The relationship
between holonomy, curvature, and parallel spinors is particularly subtle when the manifold
is topologically non-trivial, and will be the subject of a later report.
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