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Abstract. In physical applications of differential geometry, one sometimes wishes to compute
the holonomy group of a Riemannian manifold from local data, such as the curvature tensor.
In general, this can be a complicated problem, but we show that, in cases of most interest in
physics, the holonomy group can be obtained directly from the Lie algebras generated by the
curvature tensor.

1. Introduction

In physical applications of Riemannian geometry, the holonomy group [1, 2] is frequently of
basic interest [3-5]. Often the physical situation gives us some information on the curvature
tensor, and we wish to use this to determine or at least constrain the holonomy group. In
general, however, this is no easy task, and several interesting pathologies are possible.

Consider the work of Gibbonst al [4] which is concerned with the construction of
certain manifoldsM of special holonomy. (Attention has recently been focused on such
manifolds in connection with supermembrane theory [5].) In that work, the Lie algebra
K. generated by the curvature tensorxat M is computed. Gibbonst al are careful to
emphasize that is not necessarily the caghat &, is isomorphic to the Lie algebra of the
holonomy group; they remark that information on the covariant derivatives of the curvature
tensor would be needed to bridge the gap between curvature and holonomy. In fact, there
are also cases in which even this additional information would not be sufficient, even if it
were available—which is rarely the case.

The overall purpose of this work is to investigate the relationship between the curvature
tensor and the holonomy algebra of a Riemannian manifold, henceforth dehbtelh
particular, we wish to establish results which allow us to deduce the algebra of the holonomy
group from information on the curvature algebrg8,}. (The holonomy group itself is not
completely determined by its algebra, because the group is often disconnected; but this
problem is now rather well understood. Essentially, the additional information required is
topological, involving the fundamental group #f; one compares this with the holonomy
classification theorems. The full holonomy group can always be deduced in this way. See
[6] for examples and further references.) Our most useful result in this direction is the
following.

Letx € M, and letR, be the curvature tensor at If M is a local Riemannian product,
then the tangent spade (M) will split into a direct sum of subspacég” of dimensions
m;, ¥m; = n = dim M, corresponding to a splitting ¢, into a direct sum of sub-algebras,
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A9 We shall say thag, is genericif any of the &) is isomorphic either to the orthogonal
algebraGO(m;) or to the unitary algebréal(m;/2), if m; is even. (If ], does not split,
‘generic’ just means ‘isomorphic t&O(n) or LU(n/2)’, which are the holonomy algebras

of generic [1] Riemannian and Kaehlerian manifolds, respectively.) Then we have the
following result.

Theorem 1.1Let M be a complete, connected Riemannian manifold, andlée a sub-
algebra of6O(n) such that the curvature algebras satisfy

R <6 forally e M
R=06 for somex € M.

(That is, all of the curvature algebras are contained in a certain ‘minimal’ one.) Ti®gn if
is not generic, the Lie algebra of the holonomy group\bfis isomorphic to®.

The proof will be given in section 4, below.

This theorem immediately settles the concerns of Gibketnal [4], for whom & is
either the®, sub-algebra 06O (7) or the Spin(7) sub-algebra 06 (8), neither of which
is generic of course. In practice, theorem 1.1 means that the holonomy algebra can be
computed directly from the curvature algebras, provided that the latter are never generic—
which is precisely the case of interest in physics.

The proof of such results combines results on the analyticity of Einstein manifolds [7]
with the classical theorems of Nijenhuis [8, 9]. We begin with the basic machinery (see also
[10]).

2. Infinitesimal holonomy

Let M be a connectedi-dimensional Riemannian manifold with metrig Levi-Civita
connectionV, and curvature tensaR. Note that sinceR is a (1, 3) tensor, then for each

pair of tangent vector¥, Y at a pointx, R, (X, Y) is a(1, 1) tensor; in other words, it is just

a linear map from the tangent space to itself, a so-called endomorphism of the tangent space.
Let End[l,(M)] be the algebra of endomorphisms of the tangent sfgacaf); then &,

the curvature algebra at is the sub-algebra a&9(n) generated by the subspace of End

[T (M)] spanned by all’, (M) endomorphisms of the formR, (X, Y), whereX, Y € T, (M).
Similarly, let &Y be generated by all endomorphisms of the fakp(X, ¥) or of the form
(VR),(X,Y, Z), and so on. We have

R =80 c/P crPc...

and we define thénfinitesimal holonomy algebr&, by

o0

T, = /"™

m=0

(see [10]). IfHol, (M) is the Lie algebra of the holonomy group H@/) at x, then
T, C Hol, (M) forall x e M.

An interesting object which interpolates betwegp and $Hol, (M) is the local holonomy
algebra, defined as the Lie algebra of the group

Loc Hol, (M) = NHol, (U;)

where the intersection has taken over all connected open neighbourbparfsx, each
endowed with the metric induced froM. We have

T, € LocHol (M) C Hol (M).



Obtaining holonomy from curvature 663

The following two theorems are basic. The first is according to Nijenhuis [8, 9].

Theorem 2.1Let (M, g) be a connected Riemannian manifold.

(a) For each integen, the set{x € M such thatdin®, > m} is open.

(b) If dim ¥, is independent ok, or if (M, g) is real-analytic, ther¥, is isomorphic
to Hol, (M) for all x € M.

See [1] for the term ‘real analytic’. In view of (b), we shall say tidathas a constant
infinitesimal holonomy algebra if diffi, is independent of.
We shall also need Berger’s theorem [1].

Theorem 2.2Let M be a connected, simply connected (but not necessarily compiete)
dimensional Riemannian manifold.

(@) If M is irreducible, Hol(M) is isomorphic to one of the following: (i§O ),
@iy Un/2), (i) SU@R)Sp(n/b), (iv) SUM®/2), (v) Sp(n/d), (Vi) Ga(n = 7), (vii)
Spin(7)(n = 8), (viii) Spin(9(n = 16), (ix) the isotropy group of a symmetric space
of rank > 2.

(b) If M is reducible, Hal(M) is isomorphic to a direct product of groups drawn from
the appropriate lower-dimensional versions of the above list, together with the trivial group.

Recall thatM is said to be irreducible if HQIM) acts irreducibly onT,(M). We
shall say thatM is locally irreducible if the restricted holonomy group Res Hal) acts
irreducibly, and that it isstrongly irreducible if Loc Hol (M) acts irreducibly for allx.
Recall that the restricted holonomy group is obtained by considering parallel transport
around contractible loops only. Note that in Berger’s theorem, the listed groups must be
correctly embedded i5O (n) in each case: see [1] for these embeddings. We shall refer
to these lists, and the corresponding list of Lie algebras, as the irreducible (respectively,
reducible) Berger lists. Finally§O(n) and U(n/2) are ‘generic’, while the other groups
in the irreducible list are ‘special’. A group in the reducible list is generic if it has at least
one generic factor.

It is important to note that Berger's theorem only classifies the holongrayps of
(simply connected) manifolds. It is by no means clear that it classifjesr T,. However,
the following results, whose proofs we shall merely sketch, are a step in that direction.

Proposition 2.3.(a) If the infinitesimal holonomy algebra is constant, then it is classified
by the Berger lists.

(b) If M is strongly irreduciblelJ is a connected open subsetMf and the infinitesimal
holonomy algebra is constant @n, then eacl¥, is classified by the irreducible Berger list
forall x e U.

Proof. (a) As the restricted holonomy group is isomorphic to the holonomy group of the
Riemannian universal cover &1, it is classified by the Berger lists. By Nijenhuis’ theorem,
each infinitesimal holonomy algebra is isomorphic to the algebra of the holonomy group,
which of course is also the algebra of the restricted holonomy group.

(b) Given any point in M, it is clear that we can find a connected open neighbourhood
V, such that the holonomy group &f; coincides with the local holonomy group & at
x, and such that

Loc Hol, (M) = Hol,(W,)

for every connected open neighbourhobd contained inV,. Given the open sal, let
x be inU and letV, be as above. LettingV, be the intersection o¥/, and U, we find
that the local holonomy group df coincides with that ofM itself, and soU is strongly
irreducible. The result now follows as in part (a).
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It remains now to consider the consequences of relaxing the condition that the
infinitesimal holonomy algebra be constant. A helpful way to think about this is in terms of
‘rigidity’. Given a manifold M with a constant infinitesimal holonomy algebra, we know
that dim%, cannot be ‘pushed up’ at isolated points: according to the first part of Nijenhuis’
theorem, this can only be done on open sets. The following proposition will allow us to
say more.

Proposition 2.4.Let M be a connected Riemannian manifold which is complete or locally
irreducible or both. Suppose thA contains no open subset on which the infinitesimal
holonomy algebra is constant and generic. Thérmas a constant infinitesimal holonomy
algebra.

Proof. Let Ny be any connected component of the $et € M such thatdin®, =
M%xdimiy}. By Nijenhuis’ theorem,Ny is an open submanifold o#. With respect
ye

to the induced metricNg is (again by Nijenhuis’ theorem) a manifold with a constant
infinitesimal holonomy algebra, which must, by proposition 2.3, belong to one of-the
dimensional Berger lists. By hypothesis, the infinitesimal holonomy algebra is not generic.
Hence Hol(Np) is a direct sum of algebras drawn from thpecial Berger lists, and so
(since Ng is simply connected) HONg) has the formSy x S; x S, x - - - where each group
S; is special. Here we can tak® to be the trivial group if necessary; otherwise eath
acts irreducibly on some subspal;éf) of the tangent spacg, (Np), wherex is an arbitrary
point in No. (The action ofS; on T is of course trivial ifk # j.) Now sinceNj is not
complete, we cannot apply the deRham splitting theorem to concludevthat isometric

to a product manifold. However, we can still proceed as follows (see [10], p 185),Fix
and letT(Ng) = ET}” as above. Then it is possible to show that for egclhere is a
submanifold of Ny, sayNé”, passing through, with a tangent space at which may be
identified with Tx(”; and there exists a connected open neighbourhood &f., which is
isometric to a Riemannian produg{® x VY x ... whereV\” is an open neighbourhood
of x in Ny. Hence Hol(V,) = Hol, (V?) x Hol,(V?) x - - .. Now since the infinitesimal
holonomy algebra is constant @, it is likewise constant of,, and so Nijenhuis’ theorem
implies that$ol, (V,) = %,. But T, = Hol,(Nyg), and so Hal(Ng) = Hol,(V,) since both
No and V, are simply connected. Therefof = Holx(Vx(j)), and so with the exception
of V© (which is flat) eachv,” is an irreducible manifold with special holonomy. Now
irreducible manifolds with special holonomy are Einstein manifolds (see [1]) and so, of
course, are flat manifolds. Hence, there is an open neighbourhoadoof which the
Ricci tensor is a sum, with constant coefficients, of the metrics onVifle Therefore,

V Ric = 0 atx and hence throughouVy; indeed we haveV Ric = 0 on the entire set
{x € M such thatdin¥, = l;/lealg<dim %,} and also on its closure.

Let M; be the complement of that closure, and Mt be a connected component of
the open sefx € M;such that din¥, = Mz[avfdimiy}. Proceeding thus, we find that
€

V Ric = 0 everywhere onM. If M is Iocallyy irreducible, Schur’s lemma now implies that
M is an Einstein manifold. The DeTurck—Kazdan [7] theorem now informs usthad
real-analytic—that isM has an atlas of normal coordinate systems with respect to which the
metric is real-analytic. (For a very clear explanation of this theorem, normal coordinates,
and their relevance to analyticity, see chapter 5 of [1], in particular p 145.) The Nijenhuis
theorem implies that the infinitesimal holonomy algebrabfis constant.

If M is complete rather than locally irreducible, we proceed as follows. Mebe
the universal cover oM, endowed with the pulled-back metric. Théhis also complete
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with respect to this metric, as well as being simply connected. Therefore, we can use
the deRham splitting theorem [10]/ is globally isometric to the Riemannian product
M=MOxMDxM? x...where each) is either flat or irreducible. Now Ric =0

on M, and hence on each”). Applying Schur's lemma as before, we find that each
MY is an Einstein manifold and hence real-analytic. Therefrds real-analytic and
consequently the infinitesimal holonomy algebraMfis constant. The same is therefore
true of M. This completes the proof.

We shall give two applications of this proposition. The first will be used in the proof
of the main theorem 1.1.

Theorem 2.5 (Rigidity)Let M be a connected, complete manifold with an infinitesimal
holonomy algebra of typ&s—that is, T, C & for all x € M, and¥, = & for at least one
x. If & isisomorphic to the Lie algebra of one of tepecialmembers of the-dimensional
Berger lists, therg, = & for all x € M.

Proof. Suppose thatM contains a connected open sE&t on which the infinitesimal
holonomy algebra is constant and generic. Since it is constant, this algebra is isomorphic
to the algebra of one of the members of thelimensional Berger lists, (proposition 2.3).

Let x € U; then¥, € &. But none of the special members of the Berger lists contain
any generic members of either the irreducible or the reducible Berger list. (Recall that
the generic members of the reducible list are those with at least one generic factor.) For
example, Sgk) contains no members of thé-4limensional irreducible Berger list other than
itself, and it contains no members of thé-dimensional reducible Berger list other than
those of the form Sg’) x Sp(k”), wherek’ + k” < k, and none of these are generic. (Bear

in mind our remarks concerning ‘correct’ embeddings, after theorem 2.2.) The contradiction
implies thatM satisfies the conditions of proposition 2.4, and so the infinitesimal holonomy
algebra is constant. Since it is isomorphic#&oat one point,T, = & for all x, and this
completes the proof.

A connected, complete Riemannian manifold with a constant special infinitesimal
holonomy algebra is therefore ‘rigid’ in the following sensg, cannot be ‘pushed down’
to a sub-algebra at a point or even on a proper open subset, as long as the infinitesimal
holonomy algebra is of typ&. Intuitively, the manifold ‘resists being flattened’; ¥, is
‘pushed down’ atc, then, will automatically ‘push up’ to a generic algebra at some other
pointy € M (and therefore on an open neighbourhood)fThis remarkable interaction of
the infinitesimal holonomy algebras at various points is ultimately due to the real analyticity
of Einstein metrics.

As another application of proposition 2.4, and to conclude this section, we analyse
the structure of connected Riemannian manifolds with-constaninfinitesimal holonomy
algebras. It is convenient at this point to assume Wais strongly irreducible. Then
according to part (b) of proposition 2.3, i is a connected open subset on whigh
is constant, then this algebra (denot&f/)) is isomorphic to the algebra of one of the
members of the irreducible Berger list. Furthermorey i€ 0U, the boundary olU, then
T € T(U). Now let us consider the contrary; thé), (VR), and so on do not satisfy the
algebraic relations which defing(U). But if that is the case, then evidently we can find
an open neighbourhood afon which these relations are not satisfied, and this contradicts
the fact thatr is in the boundary.

Now by proposition 2.4 (recall tha¥ is locally irreducible if it is strongly irreducible)

M must contain a non-empty open subset on which the infinitesimal holonomy algebra is
constant and generic. Léf, be the union of all such; we callf, the generic submanifold
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80(8)

Figure 1. A manifold of holonomy SO(8).

of M. If x is any point ofM such that¥, is generic, therx has an open neighbourhood

V, on which the infinitesimal holonomy algebra is generic. Now either the infinitesimal
holonomy algebra is constant dfy (in which casex € M,) or it is not; in the latter case,

V. must contain a non-empty open subset on which the infinitesimal holonomy algebra is
constant and generic, and so eithee M, or x € dM,. Hence every ‘generic point’ is in

M, or its boundary.

Clearly ¥, is isomorphic either t&O(n) or to u(%n) for all x € M,, and the subset of
M, on which¥, = &9O(n) is open (possibly empty). If there is a non-empty open subset
on which%¥, = u(%n), then¥, = u(%n) on the boundary. Figure 1 gives a schematic
indication of one possible situation in the case of an eight-dimensional manifold. Notice
that we have takeff, = $l(4) on the boundary of,. There are other possibilities, but it
would not be possible to havg, = 69 (8) or spin(7) on the boundary, as these are not
contained ingl(4). Beyond this, our results so far do not permit us to be more specific as
to the behaviour off, on the boundary of/,. Indeed, we have not even shown that, in
this caseX, must belong teeither of the Berger lists. In the next section, it will be proved
that ¥, is in fact classified by the Berger lists fall x € M (theorem 3.1). However,
theorem 3.1 doesot imply that whenM is irreducible—or even strongly irreducible—
every T, must belong to thérreducible Berger list. Therefore, even M is strongly
irreducible, it is possible to find th&, is a member of the reducible Berger list wheiis
in the boundary ofMf,. It is possible, for example, th&t, could be isomorphic t&O (n)
everywhere except at one point, where it is the zero algebra, despite the fact that the zero
algebra belongs to the reducible Berger list. (It corresponds, of course, to the trivial group.)
Choosing normal coordinates at this point, we will find that all partial derivatives of the
metric vanish there; this underlines the fact that we are dealing with metrics which are not
analytic.

In the complement of the closure &1, the behaviour of the infinitesimal holonomy
algebra is more strongly constrained. Létbe a connected component of this complement
(assuming that it is not empty). TheN is locally irreducible (sinceM is strongly
irreducible) and¥, cannot be generic for any € N. Hence proposition 2.4 implies
that the infinitesimal holonomy algebra is constant 8n and by proposition 2.3, it is
isomorphic to one of the special members of thdimensional irreducible Berger list. We
see, then, that, is classified by the irreducible Berger lists everywhere, except possibly on
the boundary of the generic submanifold. Figure 2 represents a simple example in which
the complement of the closure af, is non-empty. More generally, it would be possible
to have more than one region on whi€h is special, but these regions must be mutually
disconnected if their infinitesimal holonomy algebras differ.
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su(4) spin(7)
su(4)
3ero
Figure 2. A manifold of holonomy U(4). Figure 3. A manifold of holonomy SO(8).

Figure 3 represents an interesting case which may be possible in eight dimensions. Since
neither U (4) nor Spin7) is contained in the other, we cannot have eitfigr= ${(4) or
spin(7) on the boundary. On the other harfl/ (4)(= Spin(6)) is contained in botlU (4)
and Spirf7), and soSi(4) is possible, as are smaller algebras suclBag?) (=spin(5))
or even the zero algebra. It would be most interesting to have an explicit example of a
compact manifold of this kind, particularly if the size of the generic region could be varied.

3. The curvature algebra

The infinitesimal holonomy algebra provides a link between local geometric data and the
holonomy group of a connected Riemannian manifold. However, theorem 1.1 is stated in
terms of a simpler object, the curvature algeBta At this point it is by no means clear that

the curvature algebras are classified by the Berger lists; indeed, we have yet to demonstrate
this completely even foff,, except for manifolds with constant infinitesimal holonomy
algebras. Clearly we need a complete classification of IsigtlandT,. This can be done

by means of the simple device of constructing a Riemannian manifold which has the same
curvature (at a given point) a¥, but which is analytic in normal coordinates.

Theorem 3.1Let M be anyn-dimensional Riemannian manifold, and ket M. ThenR{,
is isomorphic to the Lie algebra of some member of one ofutlitmensional Berger lists;
and similarly for%,.

Proof. Let S denote thg0, 4) version of the curvature tensor at If T, (M) is regarded
as a manifold, then each tangent spacd@f\f) can be identified witil, (M) in a natural
way, and this identification will be understood henceforth. ¢@t) denote the metric tensor
of M evaluated at. We define a0, 2) tensor,k, on T, (M) as follows. Lety € T,(M)
and letX, Y be tangent vectors t@, (M) at y. Then set

h(y)(X,Y) = gx)(X,Y) + %S(X, v,y Y).
Notice thatS(Y, y,y, X) = S(yv, X, Y,y) = S(X, y,y,Y) so thath is a symmetric tensor
field on T, (M). Let N be a connected open neighbourhood of the origiT,gf¥/) such
that n(y) is positive—definite for ally € N; such anN clearly exists, sincez(x) is
positive—definite. 1fg" denotes the restriction df to N, then(N, g") is an-dimensional
Riemannian manifold. With respect to the global coordinate system induc&d(af) by
an orthonormal basis df, (M), we haveg{}’(y) =8+ 5> % > Sy y*y', where theS;,;
are the components ¢fwith respect to the given basis, and tieare the coordinates of the
point y (that is, the components of the vectgr Evidentlygi’j(O) = &jj and(akg,.’}’)(O) =0,
and so these coordinates are normal at the origingfar Clearly ¢V is a real-analytic in
normal coordinates.
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Now let (P, g) be any Riemannian manifold such that the metric is real-analytic in
normal coordinates. Then [11] the componentg @fith respect to normal coordinates may
be expressed as a power series of the form

gii(X) =08+ 3 Y Y Ry Ox*x" + 333" (Vi Ritm) (O)xFx'x™ + -
k 1 k 1 m
+C Y D [(ViVi ... Riny;)(0) + terms involving lower order
k l

covariant derivatives oR]x*x! .- + .-

where R;;;(0), (Vi Riim;)(0) etc denote the components & VR, etc evaluated at the
origin of coordinates, and wher@. (the coefficient of theth order term) is some universal
constant. The precise form of this formula is very complicated (see [11]) and not necessary
for our purposes. Recall that, to define the curvature algebra and the infinitesimal holonomy
algebra, we think of the curvature and its covariant derivatives as endomorphisms of the
tangent space at any point: in simpler language, we ‘feed’ tangent vectors to these tensors
until precisely one contravariant and one covariant index remain free. This allows us to think
of the curvature tensor and its covariant derivatives as matrices, which generate the various
algebras by ordinary matrix multiplication. Now suppose that, in the above expansion,
every term beyond the quadratic vanishes. Then, leaving aside technicalities to be dealt
with below, the higher covariant derivatives of the curvature tensor either vanish or can be
expressed as matrix products of the lower ones. (This is what we mean by ‘terms involving
lower order covariant derivatives at’.) The upshot is that the infinitesimal holonomy
algebras of such a metric coincide with the curvature algebras. Intuitively, this is easy
to understand: the infinitesimal holonomy algebra differs from the curvature algebra only
because the former depends on all of the terms in the Taylor expansion of the metric. If, as
in the case of the metric oV, the expansion stops at the quadratic level, then we expect
to obtain nothing new from the higher derivatives.

Now sinceg" is analytic in normal coordinates, we can compute its curvaRite
and the derivatives of the curvature by simply equating coefficients in the above power
series—bearing in mind, of course, that the coefficients*afx™ . .. will automatically be
symmetrical in the indices, [, m .... Thus we obtain

R} (0) + R, (0) = Sixsj + S

(VY RN, )0 + Symk, I, m) = 0

[(V¥V)Y ... R}, )(0) + terms involving lower order covariant derivatives &t
+Symk,1,...,m,p)=0

where Syng ) denotes additional terms such that the resulting expression is symmetrical
in the indicated indices and 0 denotessQr, (M). However, bothRY(0) and S are the
curvature of certain metrics, and so both satisfy the usual identities. The effect of these
identities is that the Sym) terms can be dropped from the above relations. For example,
the first equation implies thai,-kgj + Sikj — Skitj — Swij — Sikji — Sijii + Spjix + Sujx =
{a similar expression in{}jlj (0)}.

The symmetries of the curvature tensor reduce the left-hand sidgpH42.5;.; + 28k
which, by the first Bianchi identity, is justS;;. Therefore we haveR{le(O) = Siwj. In
the same way, the differential identities satisfied by curvature tensors reduce the second

equation to(V,iVR{}’mj)(O) = 0 (only at the origin of7, (M), of course), and so on. In

general, the higher derivatives &, evaluated at 0, can be expressed algebraically in
terms of the lower-order derivatives, also evaluated at 0. If we denote the curvature algebra
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of N at the origin byRo(N), and the infinitesimal holonomy algebra By(N), then we
have $o(N) = KRo(N). (We are not asserting—nor is it true in general—tRatM) is
isomorphic tog,(M).)

The fact thatg" is analytic in normal coordinates allows us to invoke Nijenhuis’
theorem, and so we havgy(N) = Holp(N). The latter must be isomorphic to the Lie
algebra of some member of one of the Berger lists. (Recall that Berger's theorem does
not require completeness.) But the equaﬂd}f}j (0) = Sinj implies thatRo(N) = R (M),
sinceg{?(O) = §;; and theS;,; are components with respect to an orthonormal basis of
T,.(M). Therefore, we have, (M) = Ro(N) = To(N) = Holg(N), and sof, (M) belongs
to one of the Berger lists.

Let S,.ix;; denote the components 6V R), with respect to the same orthonormal basis
of T,(M) as was used above. Then using the coordinate®, M) corresponding to this
basis, we modify the definition of¥ as follows:

g =8+ 3D D Suyy 5 0D D Swinyy" ¥
k 1 m  k 1

where N C T,(M) is defined in the obvious way. Proceeding as before, we obtain
Sikij = R{ZU (0) and Sk = (VNR{}{IJ.)(O), while every higher derivative can be expressed

m

in terms of these two. Thus, we haﬁél)(N) = To(N), and the latter is again isomorphic
to $Holo(N) by Nijenhuis’ theorem. Sinc&M (M) is clearly isomorphic taR}” (N), we
again find that’™ (M) is classified by Berger's lists. In fact, the same is evidently true of
&Y (M) for every j. But T,(M) = &Y (M) for some sufficiently largg, and so%, (M)

is also classified by Berger’s lists. This completes the proof.

Notice that the holonomy structure @ff plays no role in the proof, and so there
is no reason to expect thaf will be irreducible if M is irreducible—or even strongly
irreducible. For example, the curvature Mf could vanish atc, in which case H@I(N) is
trivial. Thus, we cannot prove tha, (M) or T, (M) must belong to the irreducible Berger
list for all points in an irreducible or strongly irreducible Riemannian manifold. In order
to obtain such results, one needs an even stronger condition. For example, let, (dfhiol
denote the connected subgroup of LocH®8f) corresponding t&, (M). If the action of
InfHol, (M) on T (M) is irreducible, then indee®, must belong to the irreducible Berger
list.

4. The proof of theorem 1.1

We begin by observing that, according to theorem &1,is an algebra in one of the
Berger lists, and hence the same is truedaf For the sake of concreteness, let us
take & to be the symplectic algebr&p(n/4); the reader will find it easy to make the
necessary technical modifications for the other special Berger algebras. The statement that
R, € Gp(n/4) has the following interpretation: the tangent spacel) must admit a pair

of endomorphismg, K, satisfying/? = K> = —1,JoK = —KoJ, andR,oJ = JoR,,

R,oK = KoR,. These last equations have an analytic as well as an algebraic significance:
they are the local integrability conditions for the equatidh$ = 0, VK = 0. Hence we

can arrange for these equations to hold on a suitable small neighbourhogdaafl so

we have(VR), o J = J o (VR),, and similarly for the higher derivatives. So in fact the
infinitesimal holonomy algebras satisty, € Gp(n/4) for all y € M. Sincef, = Gp(n/4)

by hypothesis, an®k, C T, always, we hav&, = Gp(n/4). Using theorem 2.5, we now
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have¥, = Gp(n/4) for all y, and now Nijenhuis’ theorem gives us the desired result. This
completes the proof.

5. Conclusion

The overall plan of this work may be summarized as follows. We wish to ‘obtain holonomy
from curvature’, and Nijenhuis’ theorem opens the way to this; however, there are two
main obstacles in our path. The first is that Nijenhuis’ theorem requires information on the
infinitesimal holonomy algebras, but the curvature tensor itself only yields the curvature
algebras. We deal with this, in the proof of theorem 3.1, by relating the metric to a much
simpler one for which the infinitesimal holonomy algebra is (by construction) isomorphic to
the curvature algebra, on a certain neighbourhodrhis is the relatiorifo(N) = Ko(N).
The second obstacle is that Nijenhuis’ theorem requires analyticity. This is handled by
noting that our information on the curvature algebras allows us to force our manifolds to be
Einstein manifolds, which in turn allows us to use the Kazdan—DeTurck analyticity theorem.

From a practical point of view, our results reduce the determination of the holonomy
group to a computation of curvature algebras (leaving aside the topological questions
mentioned in the introduction). The structure constants of the curvature algebra at some
point can be obtained as follows. Choose an orthonormal basis at that point, and regard
the curvature tensor component,,,, as a set of antisymmetric matrices labelled by
and m. Because of the antisymmetry i and m, one obtainsz(n — 1)/2 matrices in
this way. These matrices will not, however, be linearly independent (unless the curvature
algebra is generic, so that these matrices span the whole orthogonal algebra); instead, they
span some subspace of the orthogonal algebra. In principle it is now straightforward linear
algebra to identify a basis of this subspace, and the structure constants are then evaluated by
computing ordinary matrix commutators. An alternative approach, if one suspects that the
curvature algebra is isomorphic to some given sub-algebra of the orthogonal algebra (guided
in one’s guesses by theorem 3.1, of course) is to check that the above matrices satisfy the
simple linear relations which define the Berger algebras. (These are given in chapter 10
of [1], for example.) In practice, both approaches might well involve heavy computations,
but it should not be difficult to implement them on a computer algebra program such as
MathTensor [12], which automatically produces the curvature components when presented
with the components of a metric.

This work was motivated by the observation, in [4], that the holonomy algebra of
a Riemannian manifold is not necessarily isomorphic to any of its curvature algebras.
Gibbonset al solve this problem by constructing a parallel spinor &h which forces
the spin holonomy to be special. Although theorem 1.1 shows that this additional labour is
unnecessary, the technigue used by Gibkaird is of independent interest. The relationship
between holonomy, curvature, and parallel spinors is particularly subtle when the manifold
is topologically non-trivial, and will be the subject of a later report.
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